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Molecular dynamics simulation with reversible heat addition

Nicolas G. Hadjiconstantinou*

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
~Received 22 September 1998!

We present a method developed to simulate heat addition in molecular dynamics simulations. The heat
addition is shown to bethermodynamically reversible. Molecular dynamics simulations verify the applicability
of the method and the reversibility of the heat addition. Constant pressure simulations indicate that the method
is able to capture the dynamics of phase change.@S1063-651X~99!50301-2#

PACS number~s!: 02.70.Ns, 64.60.2i, 05.70.Fh, 31.15.Qg
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In this work we use the Gaussian principle of least co
straint@1,2# to derive equations of motion that simulate he
addition~modeling, for example, internal heat generation d
to the passage of electrical current through an electroly!.
The equations of motion for the heat addition are obtained
incorporating the constraint
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Q̇~ t !dt ~1!

in the Newtonian equations of motion in the Gaussian le
constraint sense@2#. HereE0 is the initial energy of all the
particles,N is the number of particles, andQ̇(t) is the rate at
which energy is added per particle.~In systems with mean
flow an appropriate thermal energy must be considered.! The
resulting equation of motion is

pẆ i52¹(
j Þ i

V~qW i j !2l~p!pW i , ~2!

where

l~p!52
NQ̇~ t !

( i pW i
2/mi

. ~3!

Although the above equations have been formulated to a
a heat addition rate that varies as a function of time@Q̇(t)#,
in our simulations we will be using a constant heat addit
Q̇.

It can easily be shown that in the case of small heat
dition the above equations can be linearized to the follow
algorithm:

pẆ i852¹(
j Þ i

V~qW i j ! ~4!

and

pW i52@l~p8!Dt21#pi8, ~5!

which is similar to the rescaling algorithm widely used
remove heat~although in a constant temperature formu
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tion! from simulations@3#. HereDt is the numerical integra-
tion timestep.

It has been shown@2# that the constant temperature co
straint equations resulting from the application of the Gau
ian principle of least constraint indeed reproduce the cor
~canonical ensemble! dynamics in the equilibrium case
Care, however, has to be taken in nonequilibrium situati
since there has been no extension of the above result in
latter case. We expect that, since both sets of equations~2!
and~3! or ~4! and~5!, reduce to the Newtonian equations
motion for l→0, the model dynamics will not be signifi
cantly different than the ‘‘correct’’ nonequilibrium dynamic
for small l. We remark that our model interprets heat ad
tion as an acceleration in the direction of the velocitypW i /mi
of the molecule. Despite the perhaps nonphysical nature
this interpretation, we believe that if the heat addition rate
small enough, or equivalently, the heat addition timescal
long enough compared to the collision time scale~t!, then
complete thermalization of the added energy will occur s
ficiently fast for the system to be in the ‘‘correct’’ nonequ
librium state at every instant in time. An estimate for the h
addition timescale~based on the heating rates used in t
work! is tQ;100t@t; we thus conclude that the assumptio
of complete thermalization is valid.

Under the above assumption we can show that the me
nism proposed above is reversible in the thermodyna
sense.~It is obviously time reversible in the mechanic
sense.! Using the general~compressible and incompressibl!
form of the Liouville theorem
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3N F]@ q̇i f ~q,p!#
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]@ ṗi f ~q,p!#
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G , ~6!

we obtain the following equation for the ‘‘Lagrangian’’ tim
dependence of the distribution function@4#

d f

dt
52 f(

i

3N F S ]q̇i

]qi
D1S ] ṗi

]pi
D G , ~7!

or equivalently,

d ln f

dt
52(
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D G . ~8!
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Substituting Eqs.~2! and ~3! into Eq. ~8! and neglecting
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,

we obtain

d ln f

dt
52(

i

3N
NQ̇~ t !

3NkT
52

NQ̇~ t !

kT
, ~9!

wherek is Boltzmann’s constant. This, in turn, yields

dS

dt
52k

d^ ln f &
dt

5
NQ̇~ t !

T
, ~10!

which corresponds to reversible heat addition in thethermo-
dynamic sense.

Note that the fundamental relation

dE5TdS2PdV ~11!

guarantees that for constant volume energy addition all fi
energy states can be reached by reversible heat additio
in other words,

S~E1Q,V!5S~E,V!1E
Q

dQ

T
. ~12!

We performed molecular dynamics~MD! simulations to
verify that the equations of motion derived above indeed
be used to add heat in a reversible manner. The interac
potential used in all our simulations is the well know
Lennard-Jones potential@5#

V~q!54«@~s/q!122~s/q!6#,

whereq is the separation of the two interacting molecule
The potential is truncated at a distance~cut-off length! qc
53s. Unless otherwise stated, all quantities will be e
pressed in reduced units usings53.4 Å for length, m
540 amu for mass,«/k5119.8 °K for temperature, andt
5(ms2/48«)1/253.112310213 s for time. Heres and« are
the parameters of the Lennard-Jones~LJ! potential for argon
@5#, m is the mass of the argon atom, andt is the character-
istic time for argon. The equations of motion~2! and~3! @or
the rescaling equivalent~4! and ~5!# are numerically inte-
grated using Beeman’s modified equations of motion@6#,
which is a fourth order accurate in space and third or
accurate in time predictor corrector method. The evalua
of macroscopic properties~energyE, temperatureT, pressure
P, and densityr! follows from the usual@7# definitions for
statistical mechanical systems. Additionally, all extens
properties~energyE, heat addition rateQ̇, entropyS, and
Gibbs free energyG! will be given in specific~per unit mass!
reduced units. Thermodynamic properties as functions
time are defined as ‘‘quasistatic’’ averages over intervals
16t.

A cluster of 3840 argon molecules is thermally equ
brated (Q̇50) at temperatureT51 and r50.7s23 (P
50.07«/s3) for a period of 320t. Following the equilibra-
al
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tion period the fluid is heated withQ̇53.12531023«/(mt)
for a further 320t. Figure 1 shows the temperature history
a function of the heat added. On the same graph we show
path of the fluid during 320t of simulation with Q̇
523.12531023«/(mt). We see that the path is indeed r
versible, as expected.

Constant pressure simulations are preferable because
facilitate the direct ‘‘thermodynamic connection’’ to the co
stant pressure phase change of fluids which both simpl
analysis, but is also more frequently observed. We now
scribe constant pressure simulations with heat addition.
pressure was kept constant by using the method of Parin
and Rahman@8#. Although the incorporation of the heat ad
dition term@l(p)pW i # in the general constant pressure fram
work of Parinello and Rahman@8# is the subject of future
work, as is the proof of the thermodynamic reversibility
the resulting mechanism, in our simulations the two p
cesses~heat addition and constant pressure volume chan!
were decoupled and hence applied sequentially. Our res
indicate that the above assumption is acceptable, since e
lent agreement is found with both experimental data a
other simulations. Application of the linearized~re-
scaling! algorithm of equations~4! and ~5! gives identical
results~see later! that indicates thatl(p) is indeed small,
and possibly explains the decoupling of the heat addition
constant pressure processes.

A cluster of 480 argon atoms is thermally equilibrated
constant pressure (P50.07«/s3) and zero heat addition (l
50) for a period of 320t. The simulation box is initially
cubic with sideL58.95s (r50.7s23) and fully periodic.
After the equilibration period, the exact equations of he
addition~2! and~3! are integrated to simulate heating of th
fluid at the same constant pressure withQ̇53.125
31023«/(mt).

Figure 2 shows the temperature and density of the fluid
a function of time after heating starts. The liquid spinod
point is denotedC, and the vapor spinodal point is denote
F. We have made sure that the temperature is reason
uniform within and between the two phases, to ensure
the above observed behavior is not due to some therma
stability accosiated with the heating mechanism.

FIG. 1. Temperature as a function of heat added~solid line!. The
dashed line shows the reverse process.
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Figure 3 shows the numerical integration results for
entropyS and the Gibbs free energyG5E2TS1PV as a
function of temperature. The entropyS is evaluated by nu-
merically integrating

FIG. 2. Temperature and density of the fluid as a function
time after heating starts.

FIG. 3. Gibbs free energy as a function temperature~top! and
temperature as a function of entropy~bottom! during the phase
change.
e

SZ5SA1E
A

Z dQ

T
5SA1E

A

Z d~E1PV!

T
~13!

along the system path starting fromA; hereZ is any point on
the system path. Since the integration does not need to
evaluated from both phases, the entropy and as a resul
Gibbs free energy datum can be set arbitrarily. The entr
is set equal to zero atA ~start of heating!. The entropy of the
fluid for simulations at a different pressure~introduced later!
is determined consistently with the datum defined above,
using data from@9# to find the difference in entropy betwee
the initial states of the two simulations.

The saturation temperature,Tsat, is defined by pointO on
theG2T diagram of Fig. 3, or equivalently, by a ‘‘Maxwel
construction’’ @10# on theT2S diagram of the same figure
The value obtained (Tsat51.18) is close to the value cited i
@11# ~1.19! for MC simulations with a cut-off of 2.5s, the
full Lennard-Jones prediction~1.19! of Powles@11#, and the
~more accurate! MC predictions~1.18! of Lotfi, Vrabec, and
Fischer @12#. The saturated liquid density (0.59s23), and
saturated gas density (0.08s23) compare very well with the
corresponding predictions of Powles@11#, which are
0.59s23 and 0.12s23, respectively, and the predictions o
Lotfi, Vrabec, and Fischer@12#, which are 0.59s23 and
0.09s23, respectively.

Our results are also independent of the number of m
ecules in the system: the results for 960, 1920, and 3
molecules are all indistinguishable from the results of Fig
within the temperature uncertainty of our simulatio

f

FIG. 4. Temperature as a function of entropy for the three d
ferent pressures indicated~in «/s3).

TABLE I. Vapor and liquid spinodals.

T rsp(s
23)~Simulation! rsp(s

23)~Theory! Description

1.27 0.45 0.46 Liquid
1.14 0.14 0.15 Vapor
1.23 0.48 0.48 Liquid
0.99 0.12 0.12 Vapor
1.22 0.48 0.49 Liquid
0.89 0.08 0.10 Vapor
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~60.03!. Extensive series of simulations were performed
verify that the all the results presented can be reprodu
with the rescaling version of the heat addition equatio
@Eqs. ~4! and ~5!# both for constant volume and consta
pressure. The reversibility of cooling simulations at const
pressure@Q̇523.12531023«/(mt)#, for both the exact al-
gorithm and its rescaling equivalent, has also been verifi

The above simulation was repeated at three different p
sures~see Fig. 4!. Table I shows the comparison betwe
theoretical results@13# for the location of the liquid and va
por spinodal on aT2r diagram and our simulation result
The second column gives the simulation result for the d
sity as a function of the temperature, and the third colu
gives the results of@13# at the same temperature. The sp
odal branch~vapor or liquid! is indicated in the fourth col-
umn. The agreement is very good indicating that we h
recovered correctly the dynamics of the metastable sys
all the way to the spinodal.

In classical homogeneous nucleation theory the spino
points are identified with the homogeneous nucleation li
@14#; before this limit is reached the system is in metasta
states~segmentsBC and FH! in which a finite size distur-
bance in the form of a new-phase nucleus is required
initiate the phase transition. The states in the regionCF are
unstable; the fluid changes phase by spinodal decompos
in the presence of infinitessimal disturbances@14#. Spinodal
decomposition has been observed in MD by Mruzik, Ab
ham, and Pound@15#. The disturbance wavelengths to whic
the fluid is unstable~5–15s! are well within the reach of
MD. One of the outstanding theoretical issues is the tra
tion between homogeneous nucleation and spinodal dec
position.

The rate at which vapor nuclei are spontaneously p
duced in a liquid per unit time and per unit volume,J(T,P),
is given by the following relation@16#:

log10 J~T,P!5a$12e@2~T2T0!G/a#%. ~14!
-

o
d

s

t

.
s-

-
n
-

e
m

al
it
e

to

on

-

i-
m-

-

Note that this expression is an approximate curve fit to
various theories that predict nucleation rates, and thata and
G are material constants that depend on the pressure;T0 is
the temperature for which

log10 J~T0 ,P!50. ~15!

~The condensation case is similar but somewhat less
characterized.! This nucleation rate rises steeply as the s
persaturation (T2T0) rises and it is easy to show that eve
for the high heating rates of our simulations the domin
contribution to the total number of formed nuclei will b
from the highest temperature encountered. For argon,J(T
5TC51.27,P50.07);1.231025s23t21. One of the
questions of interest to date is the success rate of these
clei, or in other words, how many nuclei will have to b
present before one successfully initiates the phase transi
If we assume thatO(10) nuclei are required, the heat add
tion timescale must be tT.10r/@NJ(TC , P50.07)#
;1000t. In addition to that, the above@Eq. ~14!# steady state
relation is valid after a time of approximately 104t has
passed in a given metastable state@16#. The current heat
addition rates (tQ;100t), determined by our computer re
sources, cannot at this time allow the phase change by
mogeneous nucleation.

We thus expect that because of the insufficient time sp
at the homogeneous nucleation points, the fluid in our sim
lation changes phase by crossing into the unstable re
where spinodal decomposition takes over. Further invest
tion of the dynamics of phase change, the clarification
various issues such as the existence of van der Waals
loops in the phase change history of fluids, as well as
extension of the theoretical framework to include const
pressure heat addition are the subjects of ongoing resea
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